

Sample &

Buy

SLOS070D - JULY 1979-REVISED NOVEMBER 2014

NE5534x, SA5534x Low-Noise Operational Amplifiers

Technical

Documents

1 Features

- Equivalent Input Noise Voltage 3.5 nV/√Hz Typ
- Unity-Gain Bandwidth 10 MHz Typ
- Common-Mode Rejection Ratio 100 dB Typ
- High DC Voltage Gain 100 V/mV Typ
- Peak-to-Peak Output Voltage Swing 32 V Typ With V_{CC±} = ±18 V and R_L = 600 Ω
- High Slew Rate 13 V/µs Typ
- Wide Supply-Voltage Range ±3 V to ±20 V
- Low Harmonic Distortion
- Offset Nulling Capability
- External Compensation Capability

2 Applications

- Audio Preamplifiers
- Servo Error Amplifiers
- Medical Equipment
- Telephone Channel Amplifiers

3 Description

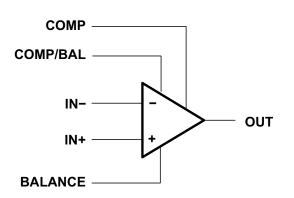
Tools &

Software

The NE5534, NE5534A, SA5534, and SA5534A devices are high-performance operational amplifiers combining excellent dc and ac characteristics. Some of the features include very low noise, high output-drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, and high slew rate.

Support &

Community


2.2

These operational amplifiers are compensated internally for a gain equal to or greater than three. Optimization of the frequency response for various applications can be obtained by use of an external compensation capacitor between COMP and COMP/BAL. The devices feature input-protection diodes, output short-circuit protection, and offsetvoltage nulling capability with use of the BALANCE and COMP/BAL pins (see Figure 10).

For the NE5534A and SA5534A devices, a maximum limit is specified for the equivalent input noise voltage.

Device Information								
PART NUMBER	ART NUMBER PACKAGE (PIN)							
NE5534x	SOIC (8)	4.90 mm × 3.91 mm						
0455044	SOIC (8)	4.90 mm × 3.91 mm						
SA5534x	SO (8)	6.20 mm × 5.30 mm						

4 Simplified Schematic

1

2

3

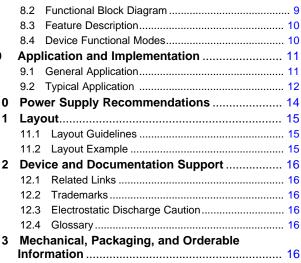
4

5

6

7

8

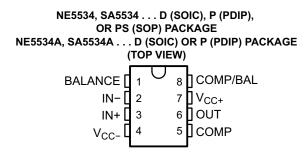

Table of Contents

Fea	tures	1
Арр	lications	1
Des	cription	1
Sim	plified Schematic	1 9
Rev	ision History	2
Pin	Configuration and Functions	3
Spe	cifications	4 10
7.1	Absolute Maximum Ratings	4 11
7.2	Handling Ratings	4
7.3	Recommended Operating Conditions	40
7.4	Thermal Information	<mark>4</mark> 12
7.5	Electrical Characteristics	5
7.6	Operating Characteristics	6
7.7	Typical Characteristics	
Deta	ailed Description	
8.1	Overview	₉ 13

Revision History 5

Changes from Revision C (September 2004) to Revision D

	Added Applications, Device Information table, Handling Ratings table, Feature Description section, Device	
	Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout	
	section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Deleted Ordering Information table.	1


www.ti.com

Page

2

6 Pin Configuration and Functions

Pin Functions

PIN		ТҮРЕ	DESCRIPTION
NAME	NO.	ITPE	DESCRIPTION
BALANCE	1	I	External frequency compensation
COMP/BAL	8	I	External offset voltage adjustment/External frequency compensation
COMP	5	0	External offset voltage adjustment
IN+	3	I	Noninverting input
IN-	2	I	Inverting Input
OUT	6	0	Output
V _{CC+}	7	_	Positive Supply
V _{CC-}	4	—	Negative Supply

SLOS070D -JULY 1979-REVISED NOVEMBER 2014

TEXAS INSTRUMENTS

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	ТҮР	MAX	UNIT
V _{CC}	Supply voltage ⁽²⁾	V _{CC+}	0		22	V
		V _{CC} -	-22		0	V
	Input voltage, either input ⁽²⁾⁽³⁾				V _{CC+}	V
	Input current ⁽⁴⁾				10	mA
Duration of output short circuit ⁽⁵⁾				Unlimite	ed	·
TJ	T _J Operating virtual-junction temperature				150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

(3) The magnitude of the input voltage must never exceed the magnitude of the supply voltage.

(4) Excessive current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless some limiting resistance is used.

(5) The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature range		-65	150	°C
V _(ESD) Electrostatic discharge	Flastraatatia diasharga	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins	0	2000	M
	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins	0	200	V

7.3 Recommended Operating Conditions

		MIN	MAX	UNIT		
V _{CC}	Supply voltade	V _{CC+}	5	15	V	
		V _{CC-}	-5	-15	V	
-	On another free air terresent up	NE5534, NE5534A	0	70	°C	
IA	Operating free-air temperature	SA5534, SA5534A	-40	85	°C	

7.4 Thermal Information

(1)		NE SA5			
	THERMAL METRIC ⁽¹⁾	D P PS			UNIT
			8 PINS		
$R_{\theta JA}$	Package thermal impedance ⁽²⁾⁽³⁾	97	85	95	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

(2) The package thermal impedance is calculated in accordance with JESD 51-7.

(3) Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A) / \theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

4

7.5 Electrical Characteristics

 $V_{CC+} = \pm 15 \text{ V}, \text{ } \text{T}_{A} = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽¹⁾		MIN	TYP	MAX	UNIT
V	Input offect voltage	$V_{O} = 0$	$T_A = 25^{\circ}C$		0.5	4	mV
V _{IO}	Input offset voltage	R _S = 50 Ω	T _A = Full range			5	mv
	land offerst surrent	N 0	T _A = 25°C		20	300	
I _{IO}	Input offset current	$V_{O} = 0$	$T_A = Full range$			400	nA
l	Input bias current	$V_{O} = 0$	$T_A = 25^{\circ}C$		500	1500	nA
I _{IB}	input bias current	$v_0 = 0$	T _A = Full range			2000	ΠA
V _{ICR}	Common-mode input-voltage range			±12	±13		V
V	Maximum pack to pack output voltage awing	R ₁ ≥ 600 Ω	$V_{CC\pm} = \pm 15 V$	24	26		V
V _{O(PP)}	Maximum peak-to-peak output-voltage swing	$R_{L} \ge 000 \Omega$	$V_{CC\pm} = \pm 18 \text{ V}$	30	32		v
		$V_{O} = \pm 10 V$	$T_A = 25^{\circ}C$	25	100		
٨	Large-signal differential-voltage amplification	$R_L^* \ge 600 \Omega$,	$T_A = Full range$	15			- V/mV
A _{VD}		R _L ≥ 2 kΩ, V _O ±10 V	$T_A = 25^{\circ}C$	25	100		
			$T_A = Full range$	15			
٨	Small-signal differential-voltage amplification	f = 10 kHz	$C_{\rm C} = 0$		6		V/mV
A _{vd}			C _C = 22 pF		2.2		V/IIIV
		V _O = ±10 V	$C_{C} = 0$		200		kHz
B _{OM}	Maximum output-swing bandwidth		$C_C = 22 \text{ pF}$		95		
DOM	waximum ouput-swing bandwidth		$V_{O} = \pm 14 V$ $C_{C} = 22 pF$		70		1112
B ₁	Unity-gain bandwidth	C _C = 22 pF	C _L = 100 pF		10		MHz
r _i	Input resistance			30	100		kΩ
z _o	Output impedance	$\begin{array}{l} A_{VD} = 30 \ dB, \\ C_{C} = 22 \ pF \end{array}$	R _L = 600 Ω, f = 10 kHz		0.3		Ω
CMRR	Common-mode rejection ratio		$V_{IC} = V_{ICR}min$	70	100		dB
k _{SVR}	Supply-voltage rejection ratio ($\Delta V_{CC} \text{ or } \Delta V_{IO})$	$V_{CC\pm} = \pm 9 \text{ V to } \pm 15 \text{ V},$ $V_O = 0$	R _S = 50 Ω	80	100		dB
l _{os}	Output short-circuit current				38		mA
I _{CC}	Total supply current	$V_{O} = 0$, No load	T _A = 25°C		4	8	mA

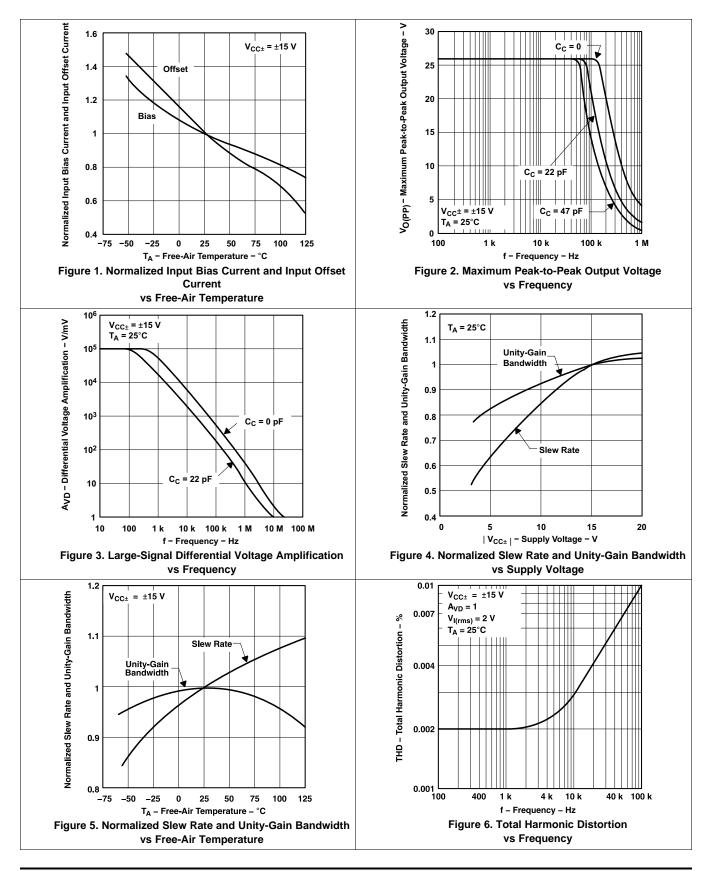
(1) All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. For NE5534 and NE5534A, full range is 0°C to 70°C. For SA5534 and SA5534A, full range is -40°C to 85°C.

NE5534, NE5534A, SA5534, SA5534A

SLOS070D - JULY 1979-REVISED NOVEMBER 2014

www.ti.com

7.6 Operating Characteristics


 $V_{CC\pm} = \pm 15 \text{ V}, \text{ } \text{T}_{\text{A}} = 25^{\circ}\text{C} \text{ (unless otherwise noted)}$

PARAMETER		PARAMETER TEST CONDITIONS		NE5534, SA5534	NE5534A, SA5534A			UNIT
				TYP	MIN	TYP	MAX	
SR	Slow roto	C _C = 0		13		13		V/µs
SK	Slew rate	C _C = 22 pF		6		6		v/µs
	Rise time	$V_{I} = 50 \text{ mV},$ $R_{L} = 600 \Omega,$	$A_{\rm MD} = 1$	20		20		ns
	Overshoot factor	R _L = 600 Ω, C _L = 100 pF		20		20		%
τ _r	Rise time	V _I = 50 mV,	$A_{\rm MD} = 1$	50		50		ns
	Overshoot factor	$R_L = 600 \Omega,$ $C_L = 500 pF$	$A_{VD} = 1,$ $C_C = 47 \text{ pF}$	35%		35%		—
V	Equivalent input noise voltage	f = 30 Hz		7		5.5	7	nV/√ Hz
Vn	Equivalent input noise voitage	f = 1 kHz		4		3.5	4.5	
		f = 30 Hz		2.5		1.5		pA/√Hz
In	Equivalent input noise current	f = 1 kHz		0.6		0.4		ра/унг
F	Average noise figure	$R_{S} = 5 k\Omega$	f = 10Hz to 20 kHz			0.9		dB

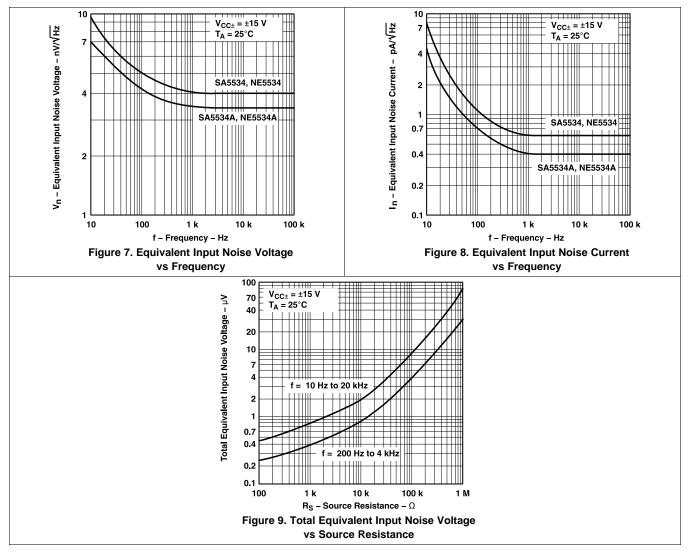
Copyright © 1979–2014, Texas Instruments Incorporated

7.7 Typical Characteristics

Copyright © 1979–2014, Texas Instruments Incorporated

Submit Documentation Feedback 7

NE5534, NE5534A, SA5534, SA5534A


SLOS070D -JULY 1979-REVISED NOVEMBER 2014

www.ti.com

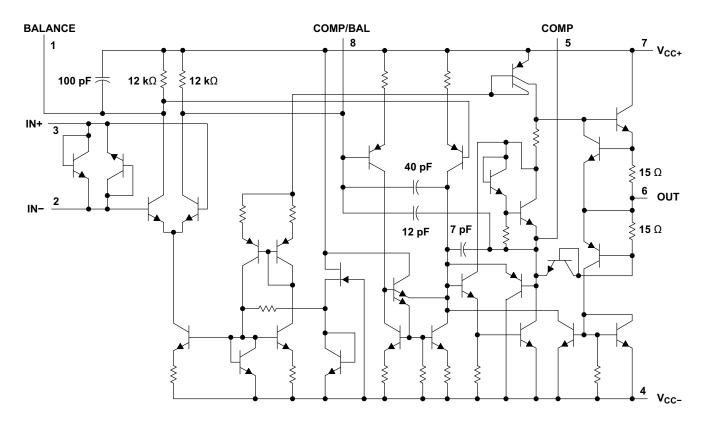
NSTRUMENTS

EXAS

Typical Characteristics (continued)

8

8 Detailed Description


8.1 Overview

The NE5534, NE5534A, SA5534, and SA5534A devices are high-performance operational amplifiers combining excellent dc and ac characteristics. Some of the features include very low noise, high output-drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, and high slew rate.

These operational amplifiers are compensated internally for a gain equal to or greater than three. Optimization of the frequency response for various applications can be obtained by use of an external compensation capacitor between COMP and COMP/BAL. The devices feature input-protection diodes, output short-circuit protection, and offset-voltage nulling capability with use of the BALANCE and COMP/BAL pins (see the *Application Circuit Diagram*).

For the NE5534A and SA5534A devices, a maximum limit is specified for the equivalent input noise voltage.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Offset-Voltage Null Capability

The input offset voltage of operational amplifiers (op amps) arises from unavoidable mismatches in the differential input stage of the op-amp circuit caused by mismatched transistor pairs, collector currents, current-gain betas (β), collector or emitter resistors, and so on. The input offset pins allow the designer to adjust for these mismatches by external circuitry. See the *Application and Implementation* section for more details on design techniques.

8.3.2 Slew Rate

The slew rate is the rate at which an operational amplifier can change its output when there is a change on the input. The NE5534 and SA5534 devices have a 13-V/µs slew rate.

8.3.3 Common-Mode Rejection Ratio

The common-mode rejection ratio (CMRR) of an amplifier is a measure of how well the device rejects unwanted input signals common to both input leads. It is found by taking the ratio of the change in input offset voltage to the change in the input voltage and converting to decibels. Ideally the CMRR is infinite, but in practice, amplifiers are designed to have it as high as possible. The CMRR of the NE5534 and SA5534 devices is 100 dB.

8.3.4 Unity-Gain Bandwidth

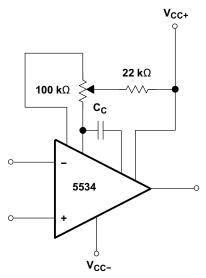
The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without greatly distorting the signal. The NE5534 and SA5534 devices have a 10-MHz unity-gain bandwidth.

8.3.5 External Compensation Capability

Frequency compensation with a capacitor may be used to increase the gain-bandwidth product (GBW) of the amplifier. See the *Application and Implementation* section for more details on design techniques.

8.4 Device Functional Modes

The NE5534 and SA5534 devices are powered on when the supply is connected. Each of these devices can be operated as a single supply operational amplifier or dual supply amplifier depending on the application.


9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 General Application

The input offset voltage of operational amplifiers (op amps) arises from unavoidable mismatches in the differential input stage of the op-amp circuit caused by mismatched transistor pairs, collector currents, currentgain betas (β), collector or emitter resistors, and so on. The input offset pins allow the designer to adjust for these mismatches by external circuitry. These input mismatches can be adjusted by putting resistors or a potentiometer between the inputs as shown in Figure 10. A potentiometer can be used to fine tune the circuit during testing or for applications which require precision offset control. More information about designing using the input-offset pins, see *Offset Voltage of Operational Amplifiers* (SLOA045).

Frequency Compensation and Offset-Voltage Nulling Circuit

Figure 10. Application Circuit

SLOS070D -JULY 1979-REVISED NOVEMBER 2014

9.2 Typical Application

The voltage follower configuration of the operational amplifier is used for applications where a weak signal is used to drive a relatively high current load. This circuit is also called a buffer amplifier or unity gain amplifier. The inputs of an operational amplifier have a very high resistance which puts a negligible current load on the voltage source. The output resistance of the operational amplifier is almost negligible, so it can provide as much current as necessary to the output load.

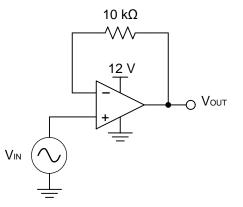


Figure 11. Voltage Follower Schematic

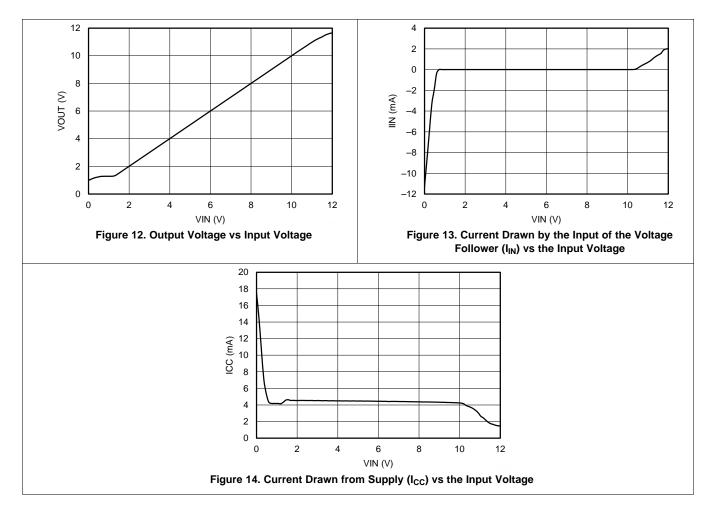
9.2.1 Design Requirements

- Output range of 2 V to 11 V
- Input range of 2 V to 11 V

9.2.2 Detailed Design Procedure

9.2.2.1 Output Voltage Swing

The output voltage of an operational amplifier is limited by its internal circuitry to some level below the supply rails. For this amplifier, the output voltage swing is within ± 12 V, which accommodates the input and output voltage requirements.


9.2.2.2 Supply and Input Voltage

For correct operation of the amplifier, neither input must be higher than the recommended positive supply rail voltage or lower than the recommended negative supply rail voltage. The chosen amplifier must be able to operate at the supply voltage that accommodates the inputs. Because the input for this application goes up to 11 V, the supply voltage must be 12 V. Using a negative voltage on the lower rail rather than ground, allows the amplifier to maintain linearity for inputs below 2 V.

Typical Application (continued)

9.2.3 Application Curves for Output Characteristics

SLOS070D - JULY 1979-REVISED NOVEMBER 2014

www.ti.com

10 Power Supply Recommendations

The NE5534 and SA5534 devices are specified for operation from ± 5 to ± 15 V; many specifications apply from 0°C to 70°C for the NE5534 device and -40°C to 85°C for the SA5534 device.

CAUTION

Supply voltages larger than ±22 V can permanently damage the device (see the *Absolute Maximum Ratings*).

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies. For more detailed information on bypass capacitor placement, refer to the *Layout Guidelines*.

11 Layout

11.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
 operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance
 power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single supply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. On multilayer PCBs, one or more layers are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current. For more detailed information, refer to *Circuit Board Layout Techniques* (SLOA089).
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicularly, as opposed to in parallel, with the noisy trace.
- Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in .
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

11.2 Layout Example

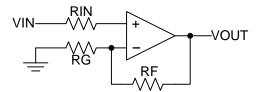
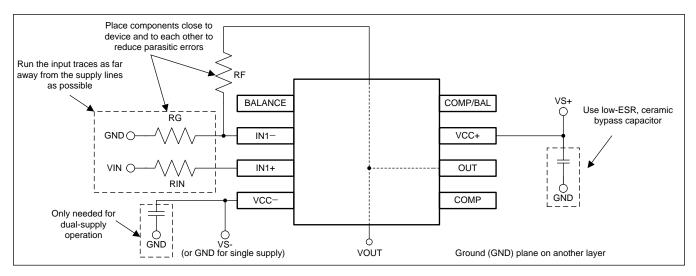
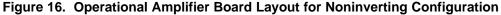




Figure 15. Operational Amplifier Schematic for Noninverting Configuration

12 Device and Documentation Support

12.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PARTS PRODUCT FOLDER		TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
NE5534	Click here	Click here	Click here	Click here	Click here
NE5534A	Click here	Click here	Click here	Click here	Click here
SA5534	Click here	Click here	Click here	Click here	Click here
SA5534A	Click here	Click here	Click here	Click here	Click here

Table 1. Related Links

12.2 Trademarks

All trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
P	(1)	(2)			(3)	(4)	(5)		(6)
NE5534AD	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	0 to 70	5534A
NE5534ADR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	0 to 70	5534A
NE5534AP	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	NE5534AP
NE5534D	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	0 to 70	NE5534
NE5534DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	0 to 70	NE5534
NE5534P	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	NE5534P
SA5534AD	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	-40 to 85	SA5534A
SA5534ADR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SA5534A
SA5534AP	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SA5534AP
SA5534D	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	-40 to 85	SA5534
SA5534DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SA5534
SA5534P	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SA5534P
SA5534PSR	Active	Production	SO (PS) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	SA5534

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

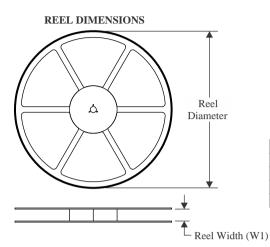
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

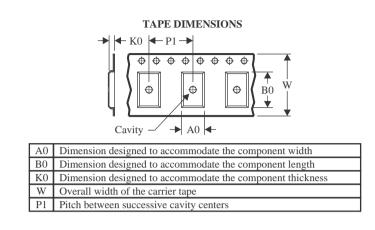
PACKAGE OPTION ADDENDUM

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

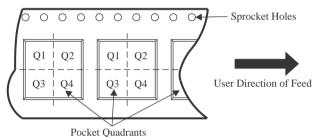
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



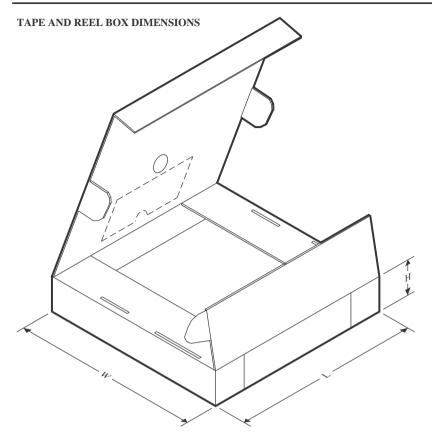

Texas

*All dimensions are nominal


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

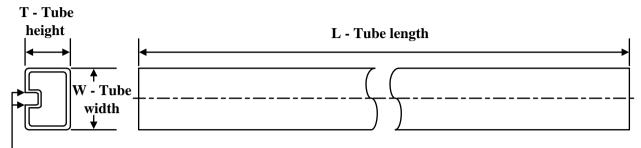


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
NE5534ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
NE5534DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SA5534ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SA5534DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SA5534PSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

25-Sep-2024

*All dimensions are nomina	al
----------------------------	----


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
NE5534ADR	SOIC	D	8	2500	353.0	353.0	32.0
NE5534DR	SOIC	D	8	2500	353.0	353.0	32.0
SA5534ADR	SOIC	D	8	2500	353.0	353.0	32.0
SA5534DR	SOIC	D	8	2500	353.0	353.0	32.0
SA5534PSR	SO	PS	8	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

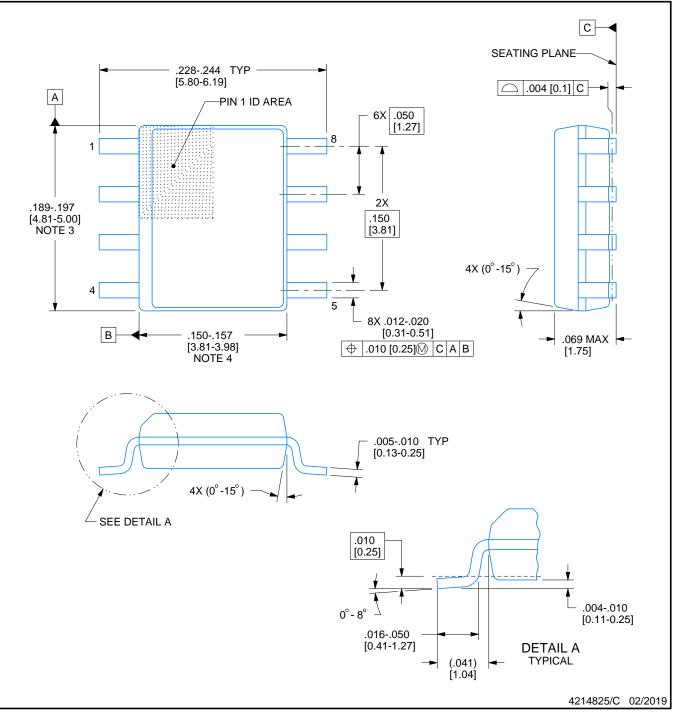
25-Sep-2024

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
NE5534AP	Р	PDIP	8	50	506	13.97	11230	4.32
NE5534P	Р	PDIP	8	50	506	13.97	11230	4.32
NE5534PE4	Р	PDIP	8	50	506	13.97	11230	4.32
SA5534AP	Р	PDIP	8	50	506	13.97	11230	4.32
SA5534P	Р	PDIP	8	50	506	13.97	11230	4.32


D0008A

PACKAGE OUTLINE

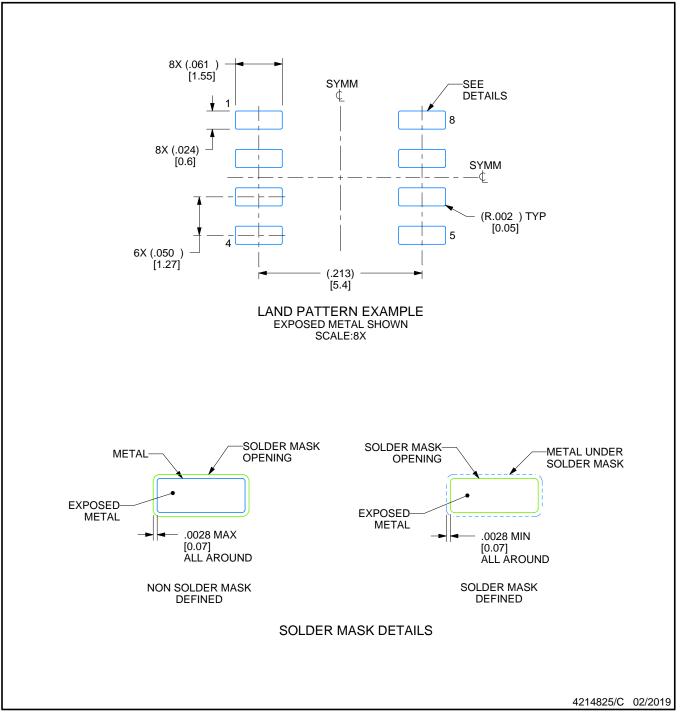
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.



D0008A

EXAMPLE BOARD LAYOUT

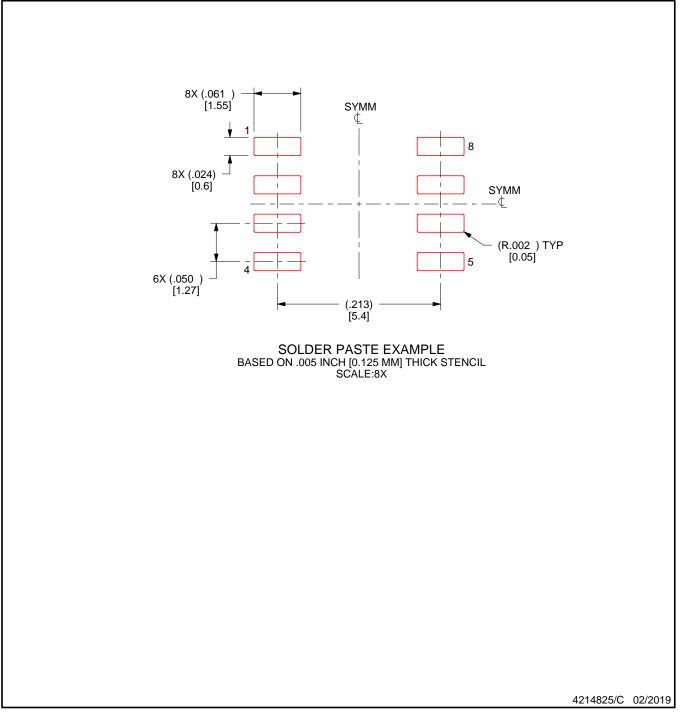
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



D0008A

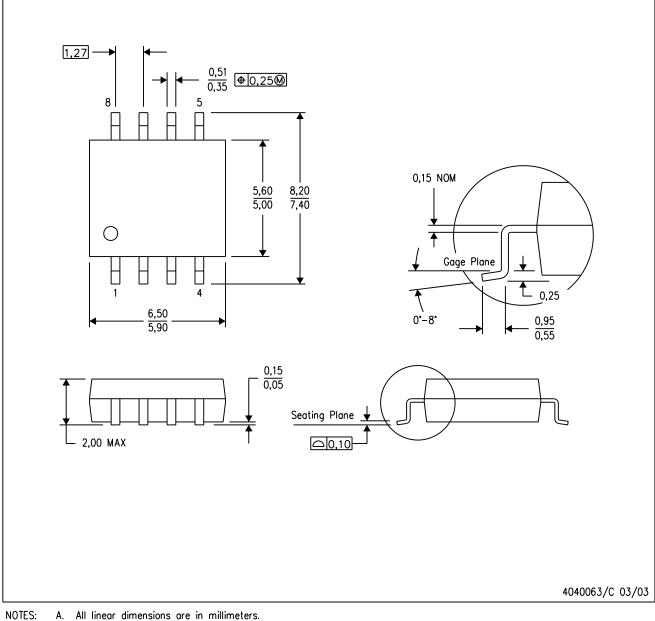
EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated